Microbiological Hydroxylation of Steroids. Part XI.¹ Convenient Routes to 3,7-, 3,11-, 3,12-, 7,11-, 7,17-, and 11,17-Dioxygenated 5α -Androstanes and to 5α -Androstan-11-one

By Alan M. Bell, (Mrs.) Virginia E. M. Chambers, Sir Ewart, R. H. Jones, G. Denis Meakins,* Wilhelm E. Müller, and John Pragnell, Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 30Y

Suitable, readily available 3,17-dioxygenated 5α -androstanes are hydroxylated efficiently at position 11 by *Asper-gillus ochraceus* and at position 7 by *Rhizopus nigricans*. These reactions, carried out on a reasonable scale, are the basis of convenient routes to derivatives of 5α -androstane (3,7-, 3,11-, 3,12-, 7,11-, 7,17-, and 11,17-dioxygenated compounds, and 5α -androstan-11-one) which are not readily accessible by chemical means.

PREVIOUS work in this series has shown that a range of simple oxygenated androstanes, estranes, and pregnanes are efficiently hydroxylated by various fungi. So far the studies have been concerned with the patterns of hydroxylation, *i.e.* the relationships between the structures of the substrates and those of the products. The knowledge thus gained has now been applied to a separate object of the microbiological studies, the use of

¹ Part X, A. S. Clegg, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, *J.C.S. Perkin 1*, 1973, 2137. fungal cultures for preparing steroids which are relatively inaccessible by purely chemical means.²

For various purposes, which include the extension of the hydroxylation work to less common steroidal systems, we needed gram quantities of the androstane derivatives enumerated in the Title. Such compounds are reasonably well known, but it is often difficult to

² A. M. Bell, P. C. Cherry, I. M. Clark, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and P. D. Woodgate, *J.C.S. Perkin I*, 1972, 2081. 1974

introduce substituents into rings B and C, as shown for example by the tedious preparations of 7α - and 7β hydroxy-5a-androstan-3-one.³ In designing microbiological alternatives the important considerations were the structures of the substrates, the nature of the

for various selective operations on the products. Aspergillus ochraceus and Rhizopus nigricans are known 4,5 to be capable of introducing hydroxy-groups at the desired positions when used under appropriate conditions in culture flasks. For preparative work it was essential

Reagents: i, *I. nigricans*; ii, Huang-Minlon reduction; iii, H₂CrO₄-Me₂CO; iv, Ag₂CO₂ on Celite; v, HO·[CH₂]₂·OH-Amberlite resin; vi, HCl-H₂O-EtOH

Reagents as before, and: vii, A. ochraceus; viii, AcNHBr; ix, TsCl-C₅H₅N; x, LiAlH(OBu⁴)₅; xi, Li₂CO₅-LiCl-Me₃N·CHO; xii, Na₂CrO₄-Ac₂O-AcOH; xiii, H₂-Pd.

micro-organisms, and the incubation conditions. It was intended that all the required systems should be obtained from three commercially available, relatively cheap substrates, viz. 3β -hydroxy- 5α -androstan-17-one (I), 17β hydroxy-5 α -androstan-3-one (II), and 5 α -androstane-3,17-dione (III): the use of substrates with substituents

11a-OH-3-CO (no. 163)

^a A. S. Clegg, W. A. Denny, Sir Ewart R. H. Jones, V. Kumar, G. D. Meakins, and V. E. M. Thomas, J. Chem. Soc. (C), 1972,

492. 4 A. M. Bell, J. W. Browne, W. A. Denny, Sir Ewart R. H. 4 C. S. Parkin I. 1972, 2930. Jones, A. Kasal, and G. D. Meakins, J.C.S. Perkin I, 1972, 2930. at different oxidation levels was expected to open the way that the efficiency of the hydroxylations should not be adversely affected by large-scale batch operation.

3,11-(CO)₂ (no. 37)

Table 1 and Schemes 1-3 summarise the results obtained. [The use of the (arabic) serial number of steroids throughout this work, and considerations about

⁵ (a) J. W. Browne, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, Y. Morisawa, A. Pendlebury, and J. Pragnell, *J.C.S. Perkin I*, 1973, 1493; (b) W. A. Denny, J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, G. D. Meakins, J. Pragnell, and V. E. M. Thomas, ibid., p. 1500.

SCHEME 3 7,11- and 11,17-Dioxygenated 5a-androstanes and 11-oxo-5a-androstane

TABLE 1

Incubations

The steroids, all derivatives of 5α -androstane, are represented in this Table and the Schemes by abbreviated names, e.g., 7β , 11α -(OH)₂-3,17-(CO)₂ for 7β , 11α -dihydroxy- 5α -androstane-3,17-dione

* Isolated as the product formed by acetylation.

the structural elucidation and the reporting of new compounds have been explained earlier.² Compounds nos. 666-684 (whose n.m.r. signals are listed in Table 2) are described here.] Of the incubations in Table 1, each involving 20 g of steroid in 5 l of culture fluid, four produced one hydroxylated steroid in greatly pre-

dominant amount and one gave a major product accompanied by appreciable quantities of two minor products. Detailed examination of the materials obtained from 3β hydroxy- 5α -androstan-17-one (I) and the 17β -hydroxy-3-ketone (II) revealed steroid balances better than those achieved using culture flasks.^{4,5} (While the techniques give similar results, some of the minor products found here had not been detected previously.) Isolation of all the constituents involves tedious separations: however, the work-up procedures were designed to be suitable for easy harvesting of the main products, and for this restricted purpose the labour is equivalent to that of two or three chemical stages on a comparable scale.

Schemes 1—3 show how the main products were transformed into the required androstane derivatives by standard methods. 3β , 7β , 11α -Trihydroxy- 5α -androstan-17-one, the progenitor of the 7,11-dioxygenated androstanes (first part of Scheme 3) is obtained by successive microbiological stages, the first and the fourth incubations in Table 1: *R. nigricans* introduces a 7β -hydroxy-group into 3β -hydroxy- 5α -androstan-17-one, and the product is used as a substrate for 11α -hydroxylation by *A. ochraceus*. Attempts to combine these steps, by adding the second micro-organism to the medium from the first incubation, led to difficulties in isolating the trihydroxy-ketone and the overall yield was lower.

TABLE 2

N.m.r. signals

The results, presented in the form used earlier,^a were obtained by examining solutions in CDCl_a at 100 MHz.

No.			τ.	(calc.) a, b		>0	H-OR
886	5a-Androst-9(11)-en-3-one	19	8.84	8.84			
000	va maiost v(11) en e ene	18	9.31	9.31			
667	5a-Androst-9(11)-ene-3.12-	19	8.71	8.71			
001	dione	ĩš	9.04	9.04			
668	17.17-Ethylenedioxy-5a-	19	9.21	9.22	H-7	6.1	m(10)
	androstan-7α-ol	18	9.16	9.16			,
669	17.17-Ethylenedioxy-5a-	19	9.19	9.19	H-7	6.6	m(20)
	androstan-78-ol	18	9.13	9.14			
670	9a,11a-Epoxy-5a-androstan-	19	8.73	8.73	H-11	6.84	d(5)
	3-one	18	9.25	9.25			
671	3-Oxo-5α-androstan-11α-yl	19	8.88		H-11	4.85	6 (10,10,5)
	toluene-p-sulphonate	18	9.22				
672	17,17-Ethylenedioxy-7α-	19	8.98	8.98	H-7	6.1	m(10)
	hydroxy-5α-androstan- 3-one	18	9.13	9.12			
673	17.17-Ethylenedioxy-7β-	19	8.94	8.95	H-7	6.25	m(20)
	hydroxy-5α-androstan- 3-one	18	9.10	9.10			
674	5~-Androstane-38 7~-diol	19	9.18	9.19	H-3	6.40	m(20)
011	ou militarostane opjita dior	18	9.29	9.29	H-7	6.10	m(7)
675	5a-Androstane-11a.17B-diol	19	9.07	9.10	H-11	6.05	m(25)
		18	9.28	9.25	H-17	6.34	t(9)
676	18.3β-Dihydroxy-5α-andros-	19	9.14	9.12	H-1	6.57	4(11.5)
	tan-17-one	18	9.15	9.13	H-3	6.37	7(10,10,5,5)
677	17.17-Ethylenedioxy-5α-	19	9.19	9.19	H-3)	0.40	
	and rost ane 3β , 7α -diol	18	9.15	9.16	H-7∫	0.47	m(55)
678	17,17-Ethylenedioxy-5α-	19	9.16	9.16	H-3)	6.49	m(40)
	and rost an e-3 β , 7β -diol	18	9.13	9.13	H-7∫	0.47	m(40)
679	7β,11α-Dihydroxy-5α-	19	8.81	8.81	H-7	6.45	m(20)
	androstane-3,17-dione	18	9.06	9.04	H-11	$5 \cdot 95$	m(20)
680	3β,11α-Diacetoxy-1β-hydroxy-	19	9.07	9.02	H-1	6.30	m(15)
	5α-androstan-17-one	18	9.13	9 ∙05	H-3	$5 \cdot 29$	m(23)
					H-11	4.88	m(27)
681	3β-Hydroxy-1β,11α-iso-	19	9.10	9.10	H-1	6.40	4(11,5)
	propylidenedioxy-5a-	18	9.15	9.14	H-3	6.30	m(20)
	androstan-17-one	10	0.00		H-11	6.00	6(11,11,5)
682	3B,7B,11a-Irinydroxy-5a-	19	9.00	9.02			
	androstan-17-one	18	9.09	9.07	77.02		
683	38,78,11a-Iriacetoxy-ba-	19	9.00	9.02	H-31	5.50	m(25)
	androstan-17-one	19	9.05	9.07	끞감	4.02	e/11 11 E\
694	for 11 or 170 Tringotown For	10	8.71	8.79	<u>п-11</u>	4.99	0(11,11,0) m(7)
004	androston-2-one	19	0.06	0.06	U 11	4.72	m(i) g(11, 11, 5)
	androstan-s-one	10	3,00	3-06	U.17	5.29	4/0.81
					11-17	0.97	#(<i>3</i> ,0)
*	A (10) 10.25 (18) 0.00						

* $\Delta^{\mathbf{s}_1}$ (19) + 0.35, (18) 0.00.

• Ref. 2. • A. M. Bell, I. M. Clark, W. A. Denny, E. R. H. Jones, G. D. Meakins, W. E. Müller, and E. E. Richards, J.C.S. Perkin 1, 1973, 2131.

EXPERIMENTAL

For general directions and use of an asterisk to indicate that the n.m.r. signals, and possibly also the i.r. absorptions, of a compound have already been reported, see ref. 2. Where compounds with serial numbers below 666 are stated to have been identified by mixed m.p., the original preparations are contained in, or can be found from, the papers cited. The microbiological procedures and the abbreviations used in reporting the results are given fully in ref. 6. Components of mixtures isolated by p.l.c. are reported in order of decreasing $R_{\rm F}$ value. Petrol refers to light petroleum, b.p. 60—80°, and s.m. indicates starting material.

Incubations.—A spore suspension of the micro-organism was introduced into medium B (5 l) contained in a Biotech FL 110-01 fermentor. The mixture was stirred for 2 d at 25 °C to produce a healthy growth of the fungus. The steroid (20 g) in EtOH (400 ml) was added at a rate of 20 ml every 1.5 h by means of a peristaltic pump (LKB 12000 Varioperpex); portions (30 ml) of a sterile solution of glucose (9 g) in H₂O (90 ml) were added 13.5, 18, and 22.5 h after the start of the addition of the steroid. After 60 h the mixture was worked up by method II.⁶

(a) 3β -Hydroxy- 5α -androstan-17-one (I) (no. 151) with Rhizopus nigricans $\longrightarrow 20.3$ g combined extracts. Chromat. Al₂O₃ (5% deactivated; 600 g). C₆H₆ eluted s.m. (5.2 g). Careful elution with CHCl₃, and combination of appropriate fractions based on t.l.c. examination, gave the following materials: (i) a mixture (800 mg), which was separated by p.l.c. [2 large plates, $2 \times \text{petrol-Me}_2\text{CO}(4:1)$] into 11a-hydroxy-5a-androstane-3,17-dione (no. 519) (109 mg), m.p. (from Me₂CO-petrol) and mixed ^{5a} m.p. 192--194°, and 3 β -hydroxy-5 α -androstane-7,17-dione (no. 558) (306 mg), m.p. (from Me₂CO-petrol) and mixed ^{5b} m.p. 202-204°; (ii) 3β , 7β -dihydroxy- 5α -androstan-17-one (no. 250) (7.75 g), m.p. (from Me₂CO-hexane) and mixed ⁴ m.p. $242-244^{\circ}$; (iii) a mixture (2.1 g) (used as described later) shown by n.m.r. to consist of 3β , 7β -dihydroxy- 5α -androstan-17-one (1 g) and 3β , 7α -dihydroxy- 5α -androstan-17-one $(1\cdot 1 \text{ g})$; and (iv) 3β , 7α -dihydroxy- 5α -androstan-17-one (no. 249) (2.82 g), m.p. (from Me₂CO-hexane) and mixed ^{5b} m.p. 193-195°. CHCl₃-MeOH (9:1) eluted $3\beta,6\alpha$ -dihydroxy-5a-androstan-17-one (no. 246) (3.05 g), m.p. (from Me₂CO) and mixed ^{5b} m.p. 222-225°.

(b) 3β -Hydroxy- 5α -androstan-17-one (I) (no. 151) with Aspergillus ochraceus $\longrightarrow 22$ g mycelial extract and 4 g broth extract. The mycelial extract crystallised from Me₂CO-hexane to give 3β , 11 α -dihydroxy- 5α -androstan-17-one (no. 256) (14.5 g), m.p. and mixed 5b m.p. 103—104°. The material from the mother liquor was chromatographed on Al₂O₃ (5% deactivated; 50 g). Petrol-CHCl₃ (1:1) gave s.m. (430 mg). Petrol-CHCl₃ (1:2) eluted 11 α -hydroxy- 5α -androstane-3, 17-dione (no. 519) (108 mg), m.p. and mixed 4 m.p. 186—189°. CHCl₃ eluted 3β , 11 α -di-hydroxy- 5α -androstan-17-one (no. 256) (2.4 g).

Broth extract chromat. Al₂O₃ (5% deactivated; 100 g). CHCl₃ eluted more 3β ,11 α -dihydroxy- 5α -androstan-17-one (2.5 g; total 19.4 g). EtOAc eluted 1 β ,3 β -dihydroxy- 5α -androstan-17-one (no. 676) (210 mg), m.p. 197—198° (from Me₂CO-hexane), [α]_D + 67° (c 1.0) (lit.,⁷ m.p. 198—199.5°, [α]_D + 73°). Elution with EtOAc-MeOH (10:1) gave material (200 mg) which was acetylated (Ac₂O-C₅H₅N; 3:1, for 2 d) and separated by p.l.c. [1 large plate, 3 × petrol-Me₂CO (4:1)] to give 3 β ,7 β ,11 α -triacetoxy-5 α -androstan-17-one (no. 683) (50 mg), m.p. 230—232° (from Me₂CO-petrol), [α]_D - 31° (c 0.4) (Found: C, 66.85; H, 8·1. C₃₅H₃₆O₇ requires C, 66.95; H, 8·1%), and 3 β ,11 α -diacetoxy-1 β -hydroxy-5 α -androstan-17-one (no. 680) (80 mg), m.p.

⁶ J. W. Blunt, I. M. Clark, J. M. Evans, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, *J. Chem. Soc.* (C), 1971, 1136.

⁷ J. J. Schneider, J. Chromatog., 1968, 37, 89.

184—188° (from Me₂CO-hexane), $[\alpha]_D - 16^\circ$ (c 0.9) (Found: C, 68.2; H, 8.3. C₂₃H₃₄O₆ requires C, 67.95; H, 8.4%), ν_{max} 3600 and 1740 cm⁻¹.

(c) 17β -Hydroxy- 5α -androstan-3-one (II) (no. 411) with Aspergillus ochraceus \longrightarrow 23 g combined extracts. Chromat. Al₂O₃ (5% deactivated; 250 g). Petrol-CHCl₃ (1:1) eluted s.m. (1·4 g). CHCl₃ and EtOAc eluted 11 α ,17 β dihydroxy- 5α -androstan-3-one (no. 296) (17·2 g), m.p. (from acetone) and mixed ⁴ m.p. 202-204°. EtOAc-MeOH (9:1) eluted material which was acetylated (Ac₂O-C₅H₅N; 3:1, for 2 d) and separated by p.l.c. (1 large plate, 1 × Et₂O) into 3β ,11 α ,17 β -triacetoxy- 5α -androstane (no. 619) (92 mg), m.p. (from hexane) and mixed ^{5b} m.p. 138-140°, and 6α ,11 α ,17 β -triacetoxy- 5α -androstan-3-one (no. 684) (630 mg), m.p. 186-188° (from Et₂O-hexane), [α]_p -90° (c 0·5 in EtOH) (Found: C, 66·6; H, 7·9. C₃₅H₃₆O₇ requires C, 66·95; H, 8·1%).

(d) $3\beta,7\beta$ -Dihydroxy- 5α -androstan-17-one (no. 250) with Aspergillus ochraceus $\longrightarrow 22$ g combined extract. Chromat. on Al₂O₃ (5% deactivated; 250 g). CHCl₃ and then EtOAc eluted s.m. (3·2 g). EtOAc-MeOH (3:1) eluted $3\beta,7\beta,11\alpha$ -trihydroxy- 5α -androstan-17-one (no. 682) (17·9 g), m.p. 227-229° (from Me₂CO), $[\alpha]_{\rm D}$ +70° (c 1·0) (Found: C, 70·45; H, 9·4. C₁₉H₃₀O₄ requires C, 70·8; H, 9·4%), $\nu_{\rm max}$ (Nujol) 3610 and 1740 cm⁻¹. (e) 5α -Androstane-3,17-dione (III) (no. 42) with Asper-

(e) 5α -Androstane-3,17-dione (III) (no. 42) with Aspergillus ochraceus \longrightarrow 18 g combined extract. Crystallisation (from Me₂CO-hexane) gave 11 α -hydroxy- 5α -androstane-3,17-dione (no. 519) (15·3 g), m.p. and mixed m.p. 192—194°. P.l.c. [5 large plates, Et₂O-MeOH (49:1)] of the material from the mother liquor gave more product (no. 519) (500 mg).

Work in Scheme 1.—Huang-Minlon reduction of the mixture $(2 \cdot 1 \text{ g})$ of 3β , 7β - and 3β , 7α -dihydroxy- 5α -androstan-17-one obtained in incubation (a), followed by oxidation with $8N-H_2CrO_4$ gave 5α -androstane-3, 7-dione (no. 36) (1.8 g), m.p. and mixed ³ m.p. 147—149°.

Huang-Minlon reduction of 3β , 7β -dihydroxy- 5α -androstan-17-one (no. 250) (2 g) gave 5α -androstane- 3β , 7β -diol (no. 390) (1.8 g), m.p. and mixed ³ m.p. 149—152°. Oxidation of a portion (100 mg) with 8n-H₂CrO₄ gave 5α -androstane-3, 7-dione (80 mg). Oxidation of the remainder with Ag₂CO₃ on Celite under the usual conditions ⁶ gave 7β -hydroxy- 5α -androstan-3-one (no. 383) (1.3 g), m.p. and mixed ³ m.p. 146—149°. Similarly 3β , 7α -dihydroxy- 5α -androstan-17-one (no. 249) gave 5α -androstane- 3β , 7α -dihydroxy- 5α -androstan-17-one (no. 249) gave 5α -androstane- 3β , 7α -dihydroxy- 5α -androstan-17-one (no. 249) gave 5α -androstane- 3β , 7α -dihydroxy- 5α -androstane-17-one (no. 249) gave 5α -androstane- 3β , 7α -dihydroxy- 5α - 3β , 7α - 3β , 3

A solution of 3β , 7β -dihydroxy- 5α -androstan-17-one (no. 250) (1 g) in HO·[CH₂]₂·OH (2·5 ml)-C₆H₆ (300 ml) was heated under reflux for 4 h with Amberlite resin [IR120(H)] (4 g). Work-up gave 17,17-ethylenedioxy- 5α -androstane- 3β , 7β -diol (no. 678) (645 mg), m.p. 170-171° (from Me₂CO-hexane), [α]_p +8° (c 0·4) (Found: C, 71·75; H, 9·9. C₂₁H₃₄O₄ requires C, 71·95; H, 9·8%), v_{max}. 3610 cm⁻¹. Oxidation of the diol (1 g) with Ag₂CO₃ on Celite gave 17,17-ethylenedioxy- 7β -hydroxy- 5α -androstan-3-one (no. 673) (890 mg), m.p. 202--204° (from Et₂O-petrol), [α]_p +22° (c 0·7) (Found: C, 72·25; H, 8·95. C₂₁H₃₂O₄ requires C, 72·4; H, 9·25%), v_{max}. 3615 and 1715 cm⁻¹, converted by Huang-Minlon reduction into 17,17-ethylenedioxy- 5α -androstan-7 β -ol (no. 669) (785 mg), m.p. 102--105° (from Me₂CO-

hexane), $[\alpha]_{\rm D} + 10^{\circ}$ (c 1.0) (lit.,⁸ m.p. 98—102°). A solution of the hydroxy-acetal (1 g) in 10n-HCl (1 ml)-H₂O (2 ml)-EtOH (20 ml) was boiled under reflux for 30 min to give 7 β -hydroxy-5 α -androstan-17-one (no. 369) (750 mg), m.p. 108—110° (slow crystallisation from Me₂CO-hexane), $[\alpha]_{\rm D}$ +132° (lit.,⁸ m.p. 107—109°).

By the same route (similar yields) 3β , 7α -dihydroxy- 5α androstan-17-one (no. 249) \longrightarrow 17, 17-ethylenedioxy- 5α androstane- 3β , 7α -diol (no. 677), m.p. 180—181° (from Me₂CO-hexane), $[\alpha]_{\rm p} - 30^{\circ}$ (c 0.4) (Found: C, 72.25; H, 9.7%) \longrightarrow 17, 17-ethylenedioxy- 7α -hydroxy- 5α -androstan-3one (no. 670), m.p. 160—161° (from Me₂CO-hexane), $[\alpha]_{\rm p}$ -9° (c 0.9) (Found: C, 72.5; H, 9.3%) \longrightarrow 17, 17-ethylenedioxy- 5α -androstan- 7α -ol (no. 668), m.p. 141—142° (from Me₂CO-hexane), $[\alpha]_{\rm p} - 36^{\circ}$ (c 0.2) (lit.,⁸ m.p. 140—142°) \longrightarrow 7α -hydroxy- 5α -androstan-17-one (no. 554), m.p. 154—155° (from hexane), $[\alpha]_{\rm p} + 60^{\circ}$ (c 0.5) (lit.,⁸ m.p. 153—156°), $\nu_{\rm max}$ (dilute solution in CCl₄; spectral slit-width 1.5—2 cm⁻¹) 3626 and 1745 cm⁻¹.

Work in Scheme 2.-Huang-Minlon reduction of 3B,11adihydroxy-5 α -androstan-17-one (no. 256) gave 5 α -androstane-3 β , 11 α -diol (no. 221) (92%), m.p. (from Me₂COhexane) and mixed 4 m.p. 187-189°. A solution of this diol (4.3 g) and AcNHBr (4 g) in Me₂CO (50 ml)-H₂O (2 ml) was kept at 0 °C for 4 h, and the product was chromatographed on Al₂O₃ (5% deactivated; 100 g). Petrol-Et₂O (1:1) eluted 11α -hydroxy- 5α -androstan-3-one (no. 163) * (3.4 g), m.p. (from Me₂CO-hexane) and mixed 4 m.p. 123-125°. A solution of this hydroxy-ketone (4 g) and TsCl (3.5 g) in C₅H₅N (50 ml) was kept at 0 °C for 12 h and then at 20 °C for 24 h. The product, in petrol-Et₂O (9:1), was filtered through Al_2O_3 (10% deactivated; 50 g) to give 3-oxo-5a-androstan-11a-yl toluene-p-sulphonate (no. 671) (4.9 g), m.p. 148—149° (from MeOH), $[\alpha]_{\rm D} -5^{\circ}$ (c 1.4) (Found: C, 69.8; H, 8.15. $C_{26}H_{36}O_4S$ requires C, 70.25; H, 8.15%). A solution of the tosylate (8.6 g), Li_2CO_3 (6 g), and LiCl (4.2 g) in Me₂N·CHO (250 ml) was boiled under reflux for 30 min under N₂ to give 5*a*-androst-9(11)-en-3-one (no. 666) (4.7 g), m.p. 98–101° (from MeOH), $[\alpha]_{\rm p} + 32^{\circ}$ (c 1.0) (Found: C, 84.0; H, 10.2. C₁₉H₂₈O requires C, 83.8; H, 10.35%), ν_{max} 3050 and 1718 cm^-1. A solution of this ketone (600 mg) and anhydrous Na₂CrO₄ (675 mg) in AcOH (6 ml)-Ac₂O (3 ml) was stirred at 35 °C for 72 h, and the product was purified by p.l.c. [1 large plate, $1 \times \text{petrol}$ - Et_2O (2:3)] to give 5α -androst-9(11)-ene-3,12-dione (no. 667) (195 mg), m.p. 195-196° (from Me₂CO-petrol), [α]_D +54° (c 1.0) (Found: C, 79.8; H, 9.2. C₁₉H₂₆O₂ requires C, 79.7; H, 9.1%), v_{max} 1716 and 1686 cm⁻¹. Hydrogen-ation of the diketone (500 mg) in EtOAc (10 ml) over 10% Pd-C (100 mg) for 10 h gave 5a-androstane-3,12-dione (no. 379) (405 mg), m.p. (from Me₂CO-petrol) and mixed ³ m.p. 212-213°.

Oxidation of 5α -androstane- 3β ,11 α -diol (no. 221) with $8n-H_2CrO_4$ gave 5α -androstane-3,11-dione (no. 37) (85%), m.p. and mixed m.p. 120—122°. Reduction of the dione (no. 37) (4 g) in tetrahydrofuran (40 ml) with a solution prepared by adding Bu^tOH (6.4 g) to LiAlH₄ (1 g) in tetrahydrofuran (40 ml) gave 3β -hydroxy- 5α -androstan-11-one (no. 548) (3.4 g), m.p. and mixed m.p. 154—155°.

Work in Scheme 3.—A suspension of 3β , 7β , 11α -trihydroxy- 5α -androstan-17-one (no. 682) (1 g) and Ag₂CO₃ on Celite (12 g) in PhMe (200 ml) was heated under reflux for 30 min and then filtered. The filtrate afforded 7β , 11α -dihydroxy-

⁸ M. Mailloux, J. Weinman, and S. Weinman, Bull. Soc. chim. France, 1969, 617. 5α -androstane-3,17-dione (no. 679) (760 mg), m.p. 234—236° (from Me₂CO-hexane), $[\alpha]_{\rm D}$ +87° (c 0·2) (Found: C, 71·2; H, 8·6. C₁₉H₂₈O₄ requires C, 71·2; H, 8·8%), $\nu_{\rm max}$ (CHCl₃) 3610, 1740, and 1710 cm⁻¹. Huang-Minlon reduction of this product gave 5α -androstane-7 β ,11 α -diol (no. 225) (86%), m.p. (from EtOAc) and mixed ⁴ m.p. 203—205°, $[\alpha]_{\rm D}$ +7° (c 0·8), which was oxidised with 8N-H₂CrO₄ to 5α -androstane-7,11-dione (no. 49) (93%), m.p. (from Me₂CO-hexane) and mixed ⁴ m.p. 147—148°.

Huang-Minlon reduction of 11α,17β-dihydroxy-5α-androstan-3-one (no. 292) (16·5 g) gave 5α-androstane-11α,17β-diol (no. 673) (13·79 g), m.p. 143—144° (from Me₂CO-hexane), $[\alpha]_{\rm D}$ —15° (c 1·2) (Found: C, 77·7; H, 11·0. C₁₉H₃₂O₂ requires C, 78·0; H, 11·0%), $\nu_{\rm max}$ 3600 cm⁻¹. Oxidation of this diol (no. 673) with 8N-H₂CrO₄ gave 5α-androstane-11,17-dione (no. 54) (10·97 g), m.p. (from hexane) and mixed ⁴ m.p. 131—133°, which was reduced with LiAlH₄ (2·8 g) and Bu⁴OH (17·6 g) in tetrahydrofuran (275 ml) to 17β-hydroxy-5α-androstan-11-one (no. 555) (9·9 g), m.p. (from Me₂CO-hexane) and mixed ^{5b} m.p. 150—153°.

Huang-Minlon reduction of 11α -hydroxy- 5α -androstane-3,17-dione (no. 519) (13.5 g) gave 5α -androstan- 11α -ol (no. 126) (11.7 g), m.p. (from hexane) and mixed ⁴ m.p. 107— 108°. Oxidation of this alcohol (no. 126) with $8N-H_2CrO_4$ gave 5α -androstan-11-one (no. 16) (95%), m.p. (from MeOH) and mixed ² m.p. $47-51^\circ$. Other Experiments.—A solution of 3β ,11 α -diacetoxy-1 β -hydroxy-5 α -androstan-17-one (no. 680) (25 mg) and KOH (10 mg) in MeOH (20 ml) was boiled under reflux for 2 h under N₂. The product was kept in 10N-HCl (0·1 ml)–Me₂CO (10 ml) at 20 °C for 2 h. Chromatography on Al₂O₃ (2% deactivated; 5 g) and elution with CHCl₃ gave 3β -hydroxy-1 β ,11 α -isopropylidenedioxy-5 α -androstan-17-one (no. 681) (15 mg), m.p. 166—168° (from Me₂CO-hexane), [α]_D +54° (c 0·4) (Found: C, 72·5; H, 9·6. C₂₂H₃₄O₄ requires C, 72·9; H, 9·5%), v_{max} 3610 and 1740 cm⁻¹. Oxidation of 5 α -androst-9(11)-en-3-one (no. 666) (400

Oxidation of 5α -androst-9(11)-en-3-one (no. 666) (400 mg) in AcOH (25 ml)-H₂O (1 ml) with CrO₃ (700 mg) for 72 h at 20 °C followed by p.l.c. [1 large plate, $1 \times \text{petrol-Et}_2O$ (7 : 3)] gave s.m. (50 mg), 5α -androst-9(11)-ene-3,12-dione (no. 667) (40 mg), and 9α , 11α -epoxy- 5α -androstan-3-one (no. 670) (18 mg), m.p. 130-132° (from Me₂CO-petrol), $[\alpha]_{\rm p}$ +8° (c 0.4) (Found: C, 78.85; H, 9.8. C₁₉H₂₈O₂ requires C, 79.1; H, 9.8%), $\nu_{\rm max}$. 1716 cm⁻¹. The last product was also prepared (85% yield) by treating 5α -androst-9(11)-en-3-one (no. 666) with *m*-ClC₆H₄·CO₃H in CH₂Cl₂ for 30 min at 20 °C.

We thank the S.R.C. for a studentship (to V. E. M. C.), the Salters' Company for a scholarship (to J. P.), and Glaxo Laboratories, Ltd., for a grant and gifts of chemicals.

[3/1319 Received, 22nd June, 1973]