Microbiological Hydroxylation of Steroids. Part XI. ${ }^{1}$ Convenient Routes to 3,7-, 3,11-, 3,12-, 7,11-, 7,17-, and 11,17-Dioxygenated 5α-Androstanes and to 5α-Androstan-11-one

By Alan M. Bell, (Mrs.) Virginia E. M. Chambers, Sir Ewart, R. H. Jones, G. Denis Meakins," Wilhelm E. Müller, and John Pragnell, Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 3QY

Suitable, readily available 3.17-dioxygenated 5α-androstanes are hydroxylated efficiently at position 11 by Aspergillus ochraceus and at position 7 by Rhizopus nigricans. These reactions, carried out on a reasonable scale, are the basis of convenient routes to derivatives of 5α-androstane (3,7-, 3,11-, 3,12-, 7,11-, 7,17-, and 11,17-dioxygenated compounds, and 5α-androstan-11-one) which are not readily accessible by chemical means.

Previous work in this series has shown that a range of simple oxygenated androstanes, estranes, and pregnanes are efficiently hydroxylated by various fungi. So far the studies have been concerned with the patterns of hydroxylation, i.e. the relationships between the structures of the substrates and those of the products. The knowledge thus gained has now been applied to a separate object of the microbiological studies, the use of
${ }_{1}$ Part X, A. S. Clegg, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, J.C.S. Perkin I, 1973, 2137.
fungal cultures for preparing steroids which are relatively inaccessible by purely chemical means. ${ }^{2}$

For various purposes, which include the extension of the hydroxylation work to less common steroidal systems, we needed gram quantities of the androstane derivatives enumerated in the Title. Such compounds are reasonably well known, but it is often difficult to

2 A. M. Bell, P. C. Cherry, I. M. Clark, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and P. D. Woodgate, J.C.S. Perkin I, 1972, 2081.
introduce substituents into rings B and c, as shown for example by the tedious preparations of 7α - and 7β -hydroxy-5 α-androstan-3-one. ${ }^{3}$ In designing microbiological alternatives the important considerations were the structures of the substrates, the nature of the
for various selective operations on the products. Aspergillus ochraceus and Rhizopus nigricans are known ${ }^{4,5}$ to be capable of introducing hydroxy-groups at the desired positions when used under appropriate conditions in culture flasks. For preparative work it was essential

* $\mathrm{O} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{O}$.

Reagents: i, \bar{K}. nigricans; ii, Huang-Minlon reduction; iii, $\mathrm{H}_{2} \mathrm{CrO}_{4}-\mathrm{Me}_{2} \mathrm{CO}$; iv, $\mathrm{Ag}_{2} \mathrm{CO}_{2}$ on Celite; v, $\mathrm{HO} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{OH}-\mathrm{Amberlite}$ resin; vi, $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$

Reagents as before, and: vii, A. ochraceus; viii, $\mathrm{AcNHBr} ; \mathrm{ix}, \mathrm{TsCl}_{\mathrm{C}}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} ; \mathbf{x}, \mathrm{LiAlH}(\mathrm{OBu})_{3} ; \mathrm{xi}^{2} \mathrm{Li}_{\mathbf{2}} \mathrm{CO}_{\mathbf{3}}-\mathrm{LiCl}-\mathrm{Me}_{\mathbf{2}} \mathrm{N} \cdot \mathrm{CHO} ; \mathrm{xii}$, $\mathrm{Na}_{2} \mathrm{CrO}_{4}-\mathrm{Ac}_{2} \mathrm{O}-\mathrm{AcOH}$; xiii, $\mathrm{H}_{2}-\mathrm{Pd}$.
micro-organisms, and the incubation conditions. It was intended that all the required systems should be obtained from three commercially available, relatively cheap substrates, viz. 3β-hydroxy- 5α-androstan-17-one (I), 17 β -hydroxy- 5α-androstan- 3 -one (II), and 5α-androstane-3,17-dione (III): the use of substrates with substituents
${ }^{2}$ A. S. Clegg, W. A. Denny, Sir Ewart R. H. Jones, V. Kumar, G. D. Meakins, and V. E. M. Thomas, J. Chem. Soc. (C), 1972, 492.
${ }^{4}$ A. M. Bell, J. W, Browne, W. A. Denny, Sir Ewart R. H. Jones, A. Kasal, and G. D. Meakins, J.C.S. Prrkin I, 1972, 2930.
at different oxidation levels was expected to open the way that the efficiency of the hydroxylations should not be adversely affected by large-scale batch operation.

Table 1 and Schemes $1-3$ summarise the results obtained. [The use of the (arabic) serial number of steroids throughout this work, and considerations about
${ }^{5}$ (a) J. W. Browne, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, Y. Morisawa, A. Pendlebury, and J. Pragnell, J.C.S. Perkin I, 1973, 1493; (b) W. A. Denny, J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, G. D. Meakins, J. Pragnell, and V. E. M. Thomas, ibid., p. 1500.

Scheme 3 7,11- and 11,17-Dioxygenated 5α-androstanes and 11-oxo- 5α-androstane

(II
(II)

Reagents as before.

TAble 1
Incubations
The steroids, all derivatives of 5α-androstane, are represented in this Table and the Schemes by abbreviated names, e.g., $7 \beta, 11 \alpha-$
 Substrates:
(I) 3β-hydroxy- 5α-androstan-17-one (no. 151),
(II) 17β-hydroxy- 5α-androstan- 3 -one (no. 411),
(III) 5α-androstane-3,17-dione (no. 42)

Fungi:
Rhizopus nigricans ($R n$),
Aspergillus ochraceus (Ao)

* Isolated as the product formed by acetylation.
the structural elucidation and the reporting of new compounds have been explained earlier. ${ }^{2}$ Compounds nos. 666-684 (whose n.m.r. signals are listed in Table 2) are described here.] Of the incubations in Table 1, each involving 20 g of steroid in 5 l of culture fluid, four produced one hydroxylated steroid in greatly pre-
dominant amount and one gave a major product accompanied by appreciable quantities of two minor products. Detailed examination of the materials obtained from $3 \beta-$ hydroxy- 5α-androstan-17-one (I) and the 17β-hydroxy3 -ketone (II) revealed steroid balances better than those achieved using culture flasks. ${ }^{\mathbf{4}, 5}$ (While the techniques
give similar results, some of the minor products found here had not been detected previously.) Isolation of all the constituents involves tedious separations: however, the work-up procedures were designed to be suitable for easy harvesting of the main products, and for this restricted purpose the labour is equivalent to that of two or three chemical stages on a comparable scale.
Schemes $\mathbf{1 - 3}$ show how the main products were transformed into the required androstane derivatives by standard methods. $3 \beta, 7 \beta, 11 \alpha$-Trihydroxy- 5α-andro-stan-17-one, the progenitor of the 7,11-dioxygenated androstanes (first part of Scheme 3) is obtained by successive microbiological stages, the first and the fourth incubations in Table 1: R. nigricans introduces a 7β-hydroxy-group into 3β-hydroxy- 5α-androstan- 17 -one, and the product is used as a substrate for 11α-hydroxylation by A. ochraceus. Attempts to combine these steps, by adding the second micro-organism to the medium from the first incubation, led to difficulties in isolating the trihydroxy-ketone and the overall yield was lower.

Table 2
N.m.r. signals

The results, presented in the form used earlier, a were obtained by examining solutions in CDCl_{3} at 100 MHz .

EXPERIMENTAL

For general directions and use of an asterisk to indicate that the n.m.r. signals, and possibly also the i.r. absorptions, of a compound have already been reported, see ref. 2. Where compounds with serial numbers below 666 are stated to have been identified by mixed m.p., the original preparations are contained in, or can be found from, the
papers cited. The microbiological procedures and the abbreviations used in reporting the results are given fully in ref. 6. Components of mixtures isolated by p.l.c. are reported in order of decreasing R_{F} value. Petrol refers to light petroleum, b.p. $60-80^{\circ}$, and s.m. indicates starting material.

Incubations.-A spore suspension of the micro-organism was introduced into medium B(51) contained in a Biotech FL 110-01 fermentor. The mixture was stirred for 2 d at $25{ }^{\circ} \mathrm{C}$ to produce a healthy growth of the fungus. The steroid (20 g) in EtOH (400 ml) was added at a rate of 20 ml every 1.5 h by means of a peristaltic pump (LKB 12000 Varioperpex); portions (30 ml) of a sterile solution of glucose (9 g) in $\mathrm{H}_{2} \mathrm{O}(90 \mathrm{ml})$ were added $13 \cdot 5,18$, and 22.5 h after the start of the addition of the steroid. After 60 h the mixture was worked up by method II. ${ }^{6}$
(a) 3β-Hydroxy- 5α-androstan-17-one (I) (no. 151) with Rhizopus nigricans $\longrightarrow 20.3 \mathrm{~g}$ combined extracts. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 600 g$) . \mathrm{C}_{6} \mathrm{H}_{6}$ eluted s.m. $(5 \cdot 2 \mathrm{~g})$. Careful elution with CHCl_{3}, and combination of appropriate fractions based on t.l.c. examination, gave the following materials: (i) a mixture (800 mg), which was separated by p.1.c. [2 large plates, $2 \times$ petrol $-\mathrm{Me}_{2} \mathrm{CO}(4: 1)$] into 11α-hydroxy- 5α-androstane-3,17-dione (no. 519) (109 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-petrol) and mixed ${ }^{5 a}$ m.p. 192$194^{\circ}$, and 3β-hydroxy- 5α-androstane-7,17-dione (no. 558) (306 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-petrol) and mixed ${ }^{5 b} \mathrm{~m} . \mathrm{p}$. 202-204 ; (ii) $3 \beta, 7 \beta$-dihydroxy- 5α-androstan-17-one (no. 250) (7.75 g), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{4} \mathrm{~m} . \mathrm{p}$. $242-244^{\circ}$; (iii) a mixture ($2 \cdot 1 \mathrm{~g}$) (used as described later) shown by n.m.r. to consist of $3 \beta, 7 \beta$-dihydroxy- 5α-androstan-17-one (1 g) and $3 \beta, 7 \alpha$-dihydroxy- 5α-androstan-17-one (1.1 g); and (iv) $3 \beta, 7 \alpha$-dihydroxy- 5α-androstan-17-one (no. 249) (2.82 g), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{5 b}$ m.p. $193-195^{\circ} . \mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$ eluted $3 \beta, 6 \alpha$-di-hydroxy- 5α-androstan-17-one (no. 246) (3.05 g), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$) and mixed ${ }^{56} \mathrm{~m}$. .p. 222-225 .
(b) 3β-Hydroxy- 5α-androstan-17-one (I) (no. 151) with Aspergillus ochraceus $\longrightarrow 22 \mathrm{~g}$ mycelial extract and 4 g broth extract. The mycelial extract crystallised from $\mathrm{Me}_{2} \mathrm{CO}$-hexane to give $3 \beta, 11 \alpha$-dihydroxy- 5α-androstan-17one (no. 256) (14.5 g), m.p. and mixed ${ }^{5 b} \mathrm{~m} . \mathrm{p}$. $103-104^{\circ}$. The material from the mother liquor was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 50 g$)$. Petrol $-\mathrm{CHCl}_{3}$ (1:1) gave s.m. (430 mg). Petrol- CHCl_{3} (1:2) eluted $11 \alpha-$ hydroxy- 5α-androstane-3,17-dione (no. 519) (108 mg), m.p. and mixed ${ }^{4} \mathrm{~m} . \mathrm{p}$. $186-189^{\circ}$. CHCl_{3} eluted $3 \beta, 11 \alpha$-di-hydroxy- 5α-androstan-17-one (no. 256) ($2 \cdot 4 \mathrm{~g}$).

Broth extract chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 100 g$)$. CHCl_{3} eluted more $3 \beta, 11 \alpha$-dihydroxy- 5α-androstan-17-one (2.5 g ; total $19 \cdot 4 \mathrm{~g}$). EtOAc eluted $1 \beta, 3 \beta$-dihydroxy- $5 \alpha-$ androstan-17-one (no. 676) (210 mg), m.p. 197-198 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+67^{\circ}$ (c $1 \cdot 0$) (lit., ${ }^{7}$ m.p. 198-199.5 , $[\alpha]_{\mathrm{D}}+73^{\circ}$). Elution with EtOAc-MeOH (10:1) gave material (200 mg) which was acetylated $\left(\mathrm{Ac}_{2} \mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right.$; $3: 1$, for 2 d) and separated by p.l.c. [1 large plate, $3 \times$ petrol- $\left.\mathrm{Me}_{2} \mathrm{CO}(4: 1)\right]$ to give $3 \beta, 7 \beta, 11 \alpha$-triaceto $x y$ - 5α-andro-stan-17-one (no. 683) (50 mg), m.p. 230-232 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ petrol), $[\alpha]_{\mathrm{D}}-31^{\circ}(c 0.4)$ (Found: C, 66.85; H, 8.1. $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{O}_{7}$ requires $\mathrm{C}, 66 \cdot 95 ; \mathrm{H}, 8 \cdot 1 \%$), and $3 \beta, 11 \alpha$-diacetoxy1β-hydroxy-5 α-androstan-17-one (no. 680) (80 mg), m.p.

[^0]$184-188^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-16^{\circ}(c 0.9)$ (Found: $\mathrm{C}, 68.2 ; \mathrm{H}, 8.3$. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{6}$ requires $\mathrm{C}, 67.95 ; \mathrm{H}, 8.4 \%$), $\nu_{\text {max }} 3600$ and $1740 \mathrm{~cm}^{-1}$.
(c) 17 1 -Hydroxy- 5α-androstan-3-one (II) (no. 411) with Aspergillus ochraceus $\longrightarrow 23 \mathrm{~g}$ combined extracts. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 250 g$)$. Petrol-CHCl $\mathrm{Cl}_{\mathbf{~}}(1: 1)$ eluted s.m. $(1 \cdot 4 \mathrm{~g}) . \mathrm{CHCl}_{3}$ and EtOAc eluted $11 \alpha, 17 \beta-$ dihydroxy- 5α-androstan-3-one (no. 296) ($17 \cdot 2 \mathrm{~g}$), m.p. (from acetone) and mixed ${ }^{4}$ m.p. 202-204 ${ }^{\circ}$. EtOAcMeOH (9:1) eluted material which was acetylated ($\mathrm{Ac}_{2} \mathrm{O}-$ $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$; 3:1, for 2 d) and separated by p.l.c. (1 large plate, $1 \times \mathrm{Et}_{2} \mathrm{O}$) into $3 \beta, 11 \alpha, 17 \beta$-triacetoxy- 5α-androstane (no. 619) (92 mg), m.p. (from hexane) and mixed ${ }^{5 b} \mathrm{~m} . \mathrm{p}$. 138 140°, and $6 \alpha, 11 \alpha, 17 \beta$-triacetoxy- 5α-androstan- 3 -one (no. 684) $(630 \mathrm{mg}), \mathrm{m} . \mathrm{p} .186-188^{\circ}$ (from $\mathrm{Et}_{2} \mathrm{O}$-hexane), $[\alpha]_{\mathrm{D}}-90^{\circ}$ (c 0.5 in EtOH) (Found: C, 66.6; H, 7.9. $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{O}_{7}$ requires $\mathrm{C}, 66.95 ; \mathrm{H}, 8.1 \%$).
(d) $3 \beta, 7 \beta$-Dihydroxy- 5α-androstan-17-one (no. 250) with Aspergillus ochraceus $\longrightarrow 22 \mathrm{~g}$ combined extract. Chromat. on $\mathrm{Al}_{2} \mathrm{O}_{3}\left(5 \%\right.$ deactivated; 250 g). CHCl_{3} and then EtOAc eluted s.m. (3.2 g). EtOAc-MeOH (3:1) eluted $3 \beta, 7 \beta, 11 \alpha-$ trihydroxy- 5α-androstan-17-one (no. 682) (17.9 g), $\mathrm{m} . \mathrm{p} .227-229^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$), $[\alpha]_{\mathrm{D}}+70^{\circ}(\mathrm{cl} \cdot 0)$ (Found: C, $70 \cdot 45 ; \mathrm{H}, 9.4 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{C}, 70 \cdot 8 ; \mathrm{H}, \mathbf{9 . 4} \%$), $v_{\text {max }}$ (Nujol) 3610 and $1740 \mathrm{~cm}^{-1}$.
(e) 5α-Androstane-3,17-dione (III) (no. 42) with Aspergillus ochraceus $\longrightarrow 18 \mathrm{~g}$ combined extract. Crystallisation (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) gave 11α-hydroxy- 5α-androstane-3,17-dione (no. 519) (15.3 g), m.p. and mixed m.p. 192-194 ${ }^{\circ}$. P.l.c. [5 large plates, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(49: 1)$] of the material from the mother liquor gave more product (no. 519) (500 mg).

Work in Scheme 1.-Huang-Minlon reduction of the mixture ($2 \cdot 1 \mathrm{~g}$) of $3 \beta, 7 \beta$ - and $3 \beta, 7 \alpha$-dihydroxy- 5α-androstan-17-one obtained in incubation (a), followed by oxidation with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-3,7-dione (no. 36) $(1.8 \mathrm{~g}), \mathrm{m} . \mathrm{p}$. and mixed ${ }^{3}$ m.p. $147-149^{\circ}$.

Huang-Minlon reduction of $3 \beta, 7 \beta$-dihydroxy- 5α-andro-stan-17-one (no. 250) (2 g) gave 5α-androstane- $3 \beta, 7 \beta$-diol (no. 390) (1.8 g), m.p. and mixed ${ }^{3} \mathrm{~m} . \mathrm{p} .149-152^{\circ}$. Oxidation of a portion (100 mg) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-andro-stane-3,7-dione (80 mg). Oxidation of the remainder with $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ on Celite under the usual conditions ${ }^{6}$ gave 7β -hydroxy-5 α-androstan- 3 -one (no. 383) (1.3 g), m.p. and mixed ${ }^{3}$ m.p. 146-149 ${ }^{\circ}$. Similarly $3 \beta, 7 \alpha$-dihydroxy- $5 \alpha-$ androstan-17-one (no. 249) gave 5α-androstane- $3 \beta, 7 \alpha$-diol (no. 674) (91%), m.p. $197-198^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-16^{\circ}(\mathrm{c} 0.7)$ (Found: C, 77.7; H, 10.8. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 78.0 ; \mathrm{H}, 11.0 \%$), $\nu_{\text {max }} 3628 \mathrm{~cm}^{-1}$, which was oxidised to 5α-androstane-3,7-dione (81%) and 7α-hydroxy5α-androstan-3-one (no. 161) (65%), m.p. and mixed ${ }^{3} \mathrm{~m} . \mathrm{p}$. $158-160^{\circ}$.

A solution of $3 \beta, 7 \beta$-dihydroxy- 5α-androstan-17-one (no. 250) (1 g) in $\mathrm{HO} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{OH}(2 \cdot 5 \mathrm{ml})-\mathrm{C}_{6} \mathrm{H}_{6}(300 \mathrm{ml})$ was heated under reflux for 4 h with Amberlite resin [IR120(H)] $(4 \mathrm{~g})$. Work-up gave 17,17-ethylenedioxy- 5α-androstane$3 \beta, 7 \beta$-diol (no. 678) (645 mg), m.p. $170-171^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}+8^{\circ}(c 0.4)$ (Found: C, 71.75 ; H, 9.9 . $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.95 ; \mathrm{H}, 9.8 \%$), $\nu_{\text {max. }} 3610 \mathrm{~cm}^{-1}$. Oxidation of the diol (1 g) with $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ on Celite gave 17,17-ethylenedioxy-7 β-hydroxy-5 α-androstan-3-one (no. 673) $(890 \mathrm{mg}), \mathrm{m} . \mathrm{p} .202-204^{\circ}$ (from $\mathrm{Et}_{2} \mathrm{O}$-petrol), $[\alpha]_{\mathrm{D}}+22^{\circ}$ (c 0.7) (Found: $\mathrm{C}, 72.25 ; \mathrm{H}, 8.95 . \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4}$ requires C, $72.4 ; \mathrm{H}, 9.25 \%$), $\nu_{\text {max. }} 3615$ and $1715 \mathrm{~cm}^{-1}$, converted by Huang-Minlon reduction into 17,17-ethylenedioxy- 5α-andro-stan- 7β-ol (no. 669) (785 mg), m.p. $102-105^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$
hexane), $[\alpha]_{\mathrm{D}}+10^{\circ}(\mathrm{c} 1.0)$ (lit., ${ }^{8}$ m.p. $98-102^{\circ}$). A solution of the hydroxy-acetal (1 g) in $10 \mathrm{~N}-\mathrm{HCl}(1 \mathrm{ml})-\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})-$ EtOH (20 ml) was boiled under reflux for 30 min to give 7β-hydroxy- 5α-androstan-17-one (no. 369) (750 mg), m.p. $108-110^{\circ}$ (slow crystallisation from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}$ $+132^{\circ}$ (lit., ${ }^{8}$ m.p. $107-109^{\circ}$).

By the same route (similar yields) $3 \beta, 7 \alpha$-dihydroxy- 5α -androstan-17-one (no. 249) \rightarrow 17,17-ethylenedioxy-5 α -androstane- $3 \beta, 7 \alpha$-diol (no. 677), m.p. 180-181 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-30^{\circ}$ (c 0.4) (Found: C, 72.25; H, $9.7 \%) \longrightarrow$ 17,17-ethylenedioxy-7 α-hydroxy-5 α-androstan-3one (no. 670), m.p. $160-161^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}$ $-9^{\circ}(c 0.9)$ (Found: $\left.\mathrm{C}, 72.5 ; \mathrm{H}, 9.3 \%\right) \longrightarrow 17,17$-ethylene-dioxy- 5α-androstan- 7α-ol (no. 668), m.p. 141-142 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-36^{\circ}(c 0 \cdot 2)$ (lit., ${ }^{8}$ m.p. $\left.140-142^{\circ}\right) \longrightarrow$ 7α-hydroxy- 5α-androstan-17-one (no. 554), m.p. 154-155 (from hexane), $[\alpha]_{\mathrm{D}}+60^{\circ}(c \quad 0.5)$ (lit., ${ }^{8}$ m.p. $153-156^{\circ}$), $\nu_{\text {max }}$ (dilute solution in CCl_{4}; spectral slit-width $1.5-2 \mathrm{~cm}^{-1}$) 3626 and $1745 \mathrm{~cm}^{-1}$.

Work in Scheme 2.-Huang-Minlon reduction of $3 \beta, 11 \alpha-$ dihydroxy- 5α-androstan-17-one (no. 256) gave 5α-andro-stane- $3 \beta, 11 \alpha$-diol (no. 221) (92%), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{4}$ m.p. $187-189^{\circ}$. A solution of this diol $(4 \cdot 3 \mathrm{~g})$ and $\mathrm{AcNHBr}(4 \mathrm{~g})$ in $\mathrm{Me}_{2} \mathrm{CO}(50 \mathrm{ml})-\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ was kept at $0{ }^{\circ} \mathrm{C}$ for 4 h , and the product was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (5% deactivated; 100 g). Petrol- $\mathrm{Et}_{2} \mathrm{O}$ ($1: 1$) eluted 11α-hydroxy- 5α-androstan- 3 -one (no. 163)* $(3.4 \mathrm{~g})$, m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{4} \mathrm{~m} . \mathrm{p}$. 123-125 ${ }^{\circ}$. A solution of this hydroxy-ketone (4 g) and $\mathrm{TsCl}(3.5 \mathrm{~g})$ in $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(50 \mathrm{ml})$ was kept at $0^{\circ} \mathrm{C}$ for 12 h and then at $20^{\circ} \mathrm{C}$ for 24 h . The product, in petrol- $\mathrm{Et}_{2} \mathrm{O}(9: 1)$, was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}(10 \%$ deactivated; 50 g) to give 3-oxo-5 α-androstan-11 $\alpha-y l$ toluene-p-sulphonate (no. 671) $(4.9 \mathrm{~g})$, m.p. $148-149^{\circ}$ (from MeOH), $[\alpha]_{\mathrm{D}}-5^{\circ}$ (c 1.4) (Found: C, 69.8; H, 8.15. $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 70.25$; $\mathrm{H}, 8.15 \%)$. A solution of the tosylate (8.6 g), $\mathrm{Li}_{2} \mathrm{CO}_{3}(6 \mathrm{~g})$, and $\mathrm{LiCl}(4 \cdot 2 \mathrm{~g})$ in $\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{CHO}(250 \mathrm{ml})$ was boiled under reflux for 30 min under N_{2} to give 5α-androst-9(11)-en-3-one (no. 666) (4.7 g), m.p. $98-101^{\circ}$ (from MeOH), $[\alpha]_{\mathrm{D}}+32^{\circ}$ ($c \mathrm{l} \cdot 0$) (Found: $\mathrm{C}, 84 \cdot 0 ; \mathrm{H}, 10 \cdot 2 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}$ requires C , $83.8 ; \mathrm{H}, 10.35 \%), \nu_{\text {max }} 3050$ and $1718 \mathrm{~cm}^{-1}$. A solution of this ketone (600 mg) and anhydrous $\mathrm{Na}_{2} \mathrm{CrO}_{4}(675 \mathrm{mg})$ in $\mathrm{AcOH}(6 \mathrm{ml})-\mathrm{Ac}_{2} \mathrm{O}(3 \mathrm{ml})$ was stirred at $35{ }^{\circ} \mathrm{C}$ for 72 h , and the product was purified by p.l.c. [1 large plate, $1 \times$ petrol$\mathrm{Et}_{2} \mathrm{O}$ (2:3)] to give 5α-androst-9(11)-ene-3,12-dione (no. 667) (195 mg), m.p. $195-196^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-petrol), $[\alpha]_{\mathrm{D}}$ $+54^{\circ}(\mathrm{cl} 1.0)$ (Found: C, 79.8; H, 9.2. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.7 ; \mathrm{H}, 9 \cdot 1 \%$), $\nu_{\text {max }} 1716$ and $1686 \mathrm{~cm}^{-1}$. Hydrogenation of the diketone $(500 \mathrm{mg})$ in EtOAc (10 ml) over 10% $\mathrm{Pd}-\mathrm{C}(100 \mathrm{mg}$) for 10 h gave 5α-androstane-3,12-dione (no. 379) (405 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-petrol) and mixed ${ }^{3} \mathrm{~m} . \mathrm{p}$. $212-213^{\circ}$.

Oxidation of 5α-androstane- $3 \beta, 11 \alpha$-diol (no. 221) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-3,11-dione (no. 37) (85%), m.p. and mixed m.p. $120-122^{\circ}$. Reduction of the dione (no. 37) (4 g) in tetrahydrofuran (40 ml) with a solution prepared by adding $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}(6.4 \mathrm{~g})$ to $\mathrm{LiAlH}_{4}(1 \mathrm{~g})$ in tetrahydrofuran (40 ml) gave 3β-hydroxy- 5α-androstan-11one (no. 548) (3.4 g), m.p. and mixed m.p. $154-155^{\circ}$.

Work in Scheme 3.-A suspension of $3 \beta, 7 \beta, 11 \alpha$-trihydroxy$5 \alpha$-androstan-17-one (no. 682) (1 g) and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ on Celite $(12 \mathrm{~g})$ in $\mathrm{PhMe}(200 \mathrm{ml})$ was heated under reflux for 30 min and then filtered. The filtrate afforded $7 \beta, 11 \alpha$-dihydroxy-
${ }^{8}$ M. Mailloux, J. Weinman, and S. Weinman, Bull. Soc. chim. France, 1969, 617.
5α-androstane-3,17-dione (no. 679) (760 mg), m.p. 234-236 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+87^{\circ}(c 0 \cdot 2$) (Found: C, 71-2; $\mathrm{H}, 8.6 . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 71 \cdot 2 ; \mathrm{H}, 8.8 \%\right)$, $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ 3610,1740 , and $1710 \mathrm{~cm}^{-1}$. Huang-Minlon reduction of this product gave 5α-androstane- $7 \beta, 11 \alpha$-diol (no. 225) $(86 \%), \mathrm{m} . \mathrm{p}$. (from EtOAc) and mixed ${ }^{4}$ m.p. 203-205 ${ }^{\circ}$, $[\alpha]_{D}+7^{\circ}$ (c $0 \cdot 8$), which was oxidised with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ to 5α-androstane-7,11-dione (no. 49) (93\%), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{4} \mathrm{~m} . \mathrm{p}$. 147-148 ${ }^{\circ}$.

Huang-Minlon reduction of $11 \alpha, 17 \beta$-dihydroxy- 5α-andro-stan-3-one (no. 292) (16.5 g) gave 5α-androstane-11 $\alpha, 17 \beta$-diol (no. 673) (13.79 g), m.p. 143-144 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{p}}-15^{\circ}$ (c 1.2) (Found: C, 77.7; H, 11.0. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 78 \cdot 0 ; \mathrm{H}, 11 \cdot 0 \%$), $\nu_{\max } 3600 \mathrm{~cm}^{-1}$. Oxidation of this diol (no. 673) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane-ll,17-dione (no. 54) (10.97 g), m.p. (from hexane) and mixed ${ }^{4}$ m.p. $131-133^{\circ}$, which was reduced with LiAlH_{4} $(2.8 \mathrm{~g})$ and $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}(17.6 \mathrm{~g})$ in tetrahydrofuran (275 ml) to 17β-hydroxy- 5α-androstan-11-one (no. 555) (9.9 g), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{5 b} \mathrm{~m} . \mathrm{p}$. $150-153^{\circ}$.

Huang-Minlon reduction of 11α-hydroxy- 5α-androstane3,17 -dione (no. 519) (13.5 g) gave 5α-androstan-11 α-ol (no. 126) (11.7 g), m.p. (from hexane) and mixed ${ }^{4} \mathrm{~m} . \mathrm{p}$. $107-$ 108°. Oxidation of this alcohol (no. 126) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstan-11-one (no. 16) (95%), m.p. (from $\mathrm{MeOH})$ and mixed ${ }^{2}$ m.p. $47-51^{\circ}$.

Other Experiments.-A solution of $3 \beta, 11 \alpha$-diacetoxy- 1β -hydroxy-5 α-androstan-17-one (no. 680) (25 mg) and KOH (10 mg) in $\mathrm{MeOH}(20 \mathrm{ml}$) was boiled under reflux for 2 h under N_{2}. The product was kept in $10 \mathrm{~N}-\mathrm{HCl}(0 \cdot 1 \mathrm{ml})-$ $\mathrm{Me}_{2} \mathrm{CO}(10 \mathrm{ml})$ at $20^{\circ} \mathrm{C}$ for 2 h . Chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (2% deactivated; 5 g) and elution with CHCl_{3} gave 3β-hydroxy-1 $\beta, 11 \alpha$-isopropylidenedioxy- 5α-androstan-17-one (no. 681) (15 mg), m.p. $166-168^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+54^{\circ}(c \quad 0 \cdot 4)$ (Found: C, 72.5; H, 9.6. $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4}$ requires $\mathrm{C}, 72.9 ; \mathrm{H}, 9.5 \%$), $\nu_{\text {max }} 3610$ and $1740 \mathrm{~cm}^{-1}$.

Oxidation of 5α-androst-9(11)-en-3-one (no. 666) (400 mg) in $\mathrm{AcOH}(25 \mathrm{ml})-\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$ with $\mathrm{CrO}_{3}(700 \mathrm{mg})$ for 72 h at $20^{\circ} \mathrm{C}$ followed by p.l.c. [1 large plate, $1 \times$ petrol$\mathrm{Et}_{2} \mathrm{O}$ (7:3)] gave s.m. (50 mg), 5α-androst-9(11)-ene-3,12dione (no. 667) (40 mg), and $9 \alpha, 11 \alpha$-epoxy-5 α-androstan-3-one (no. 670) (18 mg), m.p. $130-132^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ petrol), $[\alpha]_{\mathrm{D}}+8^{\circ}(c \quad 0.4)$ (Found: C, 78.85; H, 9.8. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 79 \cdot \mathrm{l} ; \mathrm{H}, 9.8 \%$), $\nu_{\max } 1716 \mathrm{~cm}^{-1}$. The last product was also prepared (85% yield) by treating $5 \alpha-$ androst-9(11)-en-3-one (no. 666) with $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}_{3} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 30 min at $20^{\circ} \mathrm{C}$.

We thank the S.R.C. for a studentship (to V. E. M. C.), the Salters' Company for a scholarship (to J. P.), and Glaxo Laboratories, Ltd., for a grant and gifts of chemicals.
[3/1319 Received, 22nd June, 1973]

[^0]: ${ }^{6}$ J. W. Blunt, I. M. Clark, J. M. Evans, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, J. Chem. Soc. (C), 1971, 1136.
 ${ }^{7}$ J. J. Schneider, J. Chromatog., 1968, 37, 89.

